These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alanyl-glutamine supplementation regulates mTOR and ubiquitin proteasome proteolysis signaling pathways in piglets.
    Author: Zhang B, Lin M, Yu C, Li J, Zhang L, Zhou P, Yang W, Gao F, Zhou G.
    Journal: Nutrition; 2016 Oct; 32(10):1123-31. PubMed ID: 27155955.
    Abstract:
    OBJECTIVE: The aim of the present study was to investigate the effects of the alanyl-glutamine dipeptide (Ala-Gln) or the combination supplementation of free alanine and glutamine (Ala+Gln) on the mammalian target of rapamycin (mTOR) and ubiquitin-proteasome proteolysis (UPP) signaling pathways in piglets. METHODS: We randomly allocated 180 piglets to three treatments with three replicates of 20 piglets each, fed with diets containing 0.62% Ala, 0.5% Ala-Gln, 0.21% Ala+0.34% Gln, respectively. The duration of the experiment was 28 d. RESULTS: The results showed that Ala-Gln increased average daily gain of piglets, and decreased the ratio of feed to gain (P < 0.05). Ala-Gln supplementation increased the concentrations of Gln and glutamate and decreased the activity of glutamine synthetase in liver and skeletal muscle (P < 0.05). Ala-Gln increased the expression of glutaminase and glutamate dehydrogenate (P < 0.05). The increased phosphorylation of eIF-4 E binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1) in Ala-Gln treatment were associated with phosphorylation of the mTOR in liver and skeletal muscle. Ala+Gln did not affect the phosphorylation abundances of mTOR, 4E-BP1, or S6K1 (P > 0.05). Ala-Gln supplementation inhibited the mRNA expressions of MAFbx and MuRF1 in skeletal muscle of piglets (P < 0.05). CONCLUSION: Taken together, Ala-Gln supplementation improved the growth performance of piglets, enhanced the metabolism of Gln, upregulated protein synthetic signaling in liver and skeletal muscle and decreased protein degradative signaling in muscle of piglets. Moreover, these effects of Ala-Gln were more effective than those of Ala+Gln.
    [Abstract] [Full Text] [Related] [New Search]