These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An appraisal of cinnamyl sulfonamide hydroxamate derivatives (HDAC inhibitors) for anti-cancer, anti-angiogenic and anti-metastatic activities in human cancer cells.
    Author: Reddy ND, Shoja MH, Biswas S, Nayak PG, Kumar N, Rao CM.
    Journal: Chem Biol Interact; 2016 Jun 25; 253():112-24. PubMed ID: 27163855.
    Abstract:
    Multiple genetic mutations along with unusual epigenetic modifications play a major role in cancer development. Histone deacetylase (HDAC) enzyme overexpression observed in the majority of cancers is responsible for tumor suppressor gene silencing and activation of proto-oncogenes to oncogenes. Cinnamic acid derivatives exhibit anti-cancer potential through HDAC enzyme inhibition. We have synthesized a few cinnamyl sulfonamide hydroxamate derivatives (NMJ-1, -2 and -3) by already published in-house procedures and their purity, and chemical characterization were performed by NMR, mass spectrometry and elemental analysis. The anti-cancer activities were also evaluated against colon cancer. The rationale for synthesis was based on bioisosterism concept. To take the work forward, these compounds were considered for in vitro anti-angiogenic and anti-metastatic activities in cancer cells. The effectiveness of these compounds was determined by SRB assay. The compounds showed cancer cell cytotoxicity (IC50 range of 5.7 ± 0.43 to 20.5 ± 1.9 μM). The mechanism of compound-induced cell death involves an intrinsic apoptosis pathway which was supported by the following: increase in apoptotic index, arrest in cell cycle at G2/M phase, increase in annexin V binding and induction of p21(Waf1/Cip1) expression in the treated cells. Further, their target modulating effect, measured as the expression of acetyl-H3 histone and acetyl α-tubulin was determined by Western blots. Hyper acetylation of H3 histone and α-tubulin were observed. Furthermore, increased expression of cleaved caspase-3, cleaved PARP, total Bad was estimated by ELISA. The anti-angiogenic effect was examined through cobalt (II) chloride (CoCl2)-induced HIF-1α expression, where the compounds reduced the expression of induced HIF-1α. In addition, their anti-metastatic ability was determined through phorbol-12-myristate-13-acetate (PMA)-induced expression of MMP-2 and -9 by Western blotting and gelatin zymography. Inhibition of malignant cell migration was assessed by scratch wound assay. The compounds showed a decrease in cell migration and inhibition of induced MMP-2 and MMP-9 expression. NMJ-2 exhibited comparable activity to that of standard SAHA. Our findings indicate that NMJ series of compound have potent in vitro anti-cancer, anti-angiogenic and anti-metastatic activity through HDAC enzyme inhibition.
    [Abstract] [Full Text] [Related] [New Search]