These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes.
    Author: Wang J, Duan Z, Nugent Z, Zou JX, Borowsky AD, Zhang Y, Tepper CG, Li JJ, Fiehn O, Xu J, Kung HJ, Murphy LC, Chen HW.
    Journal: Cancer Lett; 2016 Aug 10; 378(2):69-79. PubMed ID: 27164560.
    Abstract:
    Metabolic reprogramming such as the aerobic glycolysis or Warburg effect is well recognized as a common feature of tumorigenesis. However, molecular mechanisms underlying metabolic alterations for tumor therapeutic resistance are poorly understood. Through gene expression profiling analysis we found that histone H3K36 methyltransferase NSD2/MMSET/WHSC1 expression was highly elevated in tamoxifen-resistant breast cancer cell lines and clinical tumors. IHC analysis indicated that NSD2 protein overexpression was associated with the disease recurrence and poor survival. Ectopic expression of NSD2 wild type, but not the methylase-defective mutant, drove endocrine resistance in multiple cell models and xenograft tumors. Mechanistically, NSD2 was recruited to and methylated H3K36me2 at the promoters of key glucose metabolic enzyme genes. Its overexpression coordinately up-regulated hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD), two key enzymes of glycolysis and the pentose phosphate pathway (PPP), as well as TP53-induced glycolysis regulatory phosphatase TIGAR. Consequently, NSD2-driven tamoxifen-resistant cells and tumors displayed heightened PPP activity, elevated NADPH production, and reduced ROS level, without significantly altered glycolysis. These results illustrate a coordinated, epigenetic activation of key glucose metabolic enzymes in therapeutic resistance and nominate methyltransferase NSD2 as a potential therapeutic target for endocrine resistant breast cancer.
    [Abstract] [Full Text] [Related] [New Search]