These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mixed Ge/Pb perovskite light absorbers with an ascendant efficiency explored from theoretical view.
    Author: Sun PP, Li QS, Feng S, Li ZS.
    Journal: Phys Chem Chem Phys; 2016 Jun 07; 18(21):14408-18. PubMed ID: 27171746.
    Abstract:
    Organic-inorganic methylammonium lead halide perovskites have recently attracted great interest emerging as promising photovoltaic materials with a high 20.8% efficiency, but lead pollution is still a problem that may hinder the development and wide spread of MAPbI3 perovskites. To reduce the use of lead, we investigated the structures, electronic and optical properties of mixed MAGexPb(1-x)I3 theoretically by using density functional theory methods at different calculation levels. Results show that the mixed Ge/Pb perovskites exhibit a monotonic decrease evolution in band energy to push the band gap deeper in the near-infrared region and have a red shift optical absorption with an increased proportion of Ge. The results also indicate that lattice distortion and spin-orbit coupling (SOC) strength play important roles in the band gap behavior of MAGexPb(1-x)I3 by affecting the bandwidths of CBM and VBM. The calculations for short circuit current density, open circuit voltage, and theoretical power conversion efficiency suggest that mixed Ge/Pb perovskite solar cells (PSCs) with efficiency over 22% are superior to MAPbI3 and MAGeI3. And notably, MAGe0.75Pb0.25I3 is a promising harmless material for solar cells absorber with the highest theoretical efficiency of 24.24%. These findings are expected to be helpful for further rational design of nontoxic light absorption layer for high-performance PSCs.
    [Abstract] [Full Text] [Related] [New Search]