These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC-104(KIF1A) Motility and Clustering in Neurons.
    Author: Wu GH, Muthaiyan Shanmugam M, Bhan P, Huang YH, Wagner OI.
    Journal: Traffic; 2016 Aug; 17(8):891-907. PubMed ID: 27172328.
    Abstract:
    Kinesin-3 UNC-104(KIF1A) is the major axonal transporter of synaptic vesicles. Employing yeast two-hybrid and co-immunoprecipitation (Co-IP) assays, we characterized a LIN-2(CASK) binding site overlapping with that of reported UNC-104 activator protein SYD-2(Liprin-α) on the motor's stalk domain. We identified the L27 and GUK domains of LIN-2 to be the most critical interaction domains for UNC-104. Further, we demonstrated that the L27 domain interacts with the sterile alpha motifs (SAM) domains of SYD-2, while the GUK domain is able to interact with both the coiled coils and SAM domains of SYD-2. LIN-2 and SYD-2 colocalize in Caenorhabditis elegans neurons and display interactions in bimolecular fluorescence complementation (BiFC) assays. UNC-104 motor motility and Synaptobrevin-1 (SNB-1) cargo transport are largely diminished in neurons of LIN-2 knockout worms, which cannot be compensated by overexpressing SYD-2. The absence of the motor-activating function of LIN-2 results in increased motor clustering along axons, thus retaining SNB-1 cargo in cell bodies. LIN-2 and SYD-2 both positively affect the velocity of UNC-104, however, only LIN-2 is able to efficiently elevate the motor's run lengths. From our study, we conclude that LIN-2 and SYD-2 act in a functional complex to regulate the motor with LIN-2 being the more prominent activator.
    [Abstract] [Full Text] [Related] [New Search]