These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Effects of estrogen on epidermis growth of mice and proliferation of human epidermal cell line HaCaT and its mechanism]. Author: Zhou T, Chen J, Huang Z, Fang L, Chen Y, Chen Y, Peng Y. Journal: Zhonghua Shao Shang Za Zhi; 2016 May; 32(5):299-304. PubMed ID: 27188489. Abstract: OBJECTIVE: To observe the effects of estrogen on epidermis growth of mice and proliferation of keratinocytes (human epidermal cell line HaCaT), and to explore its mechanism. METHODS: (1) Five adult C57BL/6 mice in estrus cycle were identified by vaginal exfoliative cytology diagnosis and set as estrus group, while another 5 adult C57BL/6 mice with ovary resected before sexual development were set as ovariectomized group. The full-thickness skin from the tail root of mice in two groups were collected. The thickness of epidermis was observed and measured after HE staining. The distribution of proliferating cell nuclear antigen (PCNA)-positive cells in epidermis was observed by immunohistochemical staining, the number of which was counted. (2) HaCaT cells in logarithmic growth phase were cultured with RPMI 1640 nutrient solution containing 10% fetal bovine serum, and they were divided into negative control group (NC), pure estradiol group (PE), protein kinase B (Akt) inhibitor group (AI), and extracellular signal-regulated kinase (ERK) inhibitor group (EI) according to the random number table, with 20 wells in each group. To nutrient solution of each group, 1 μL dimethyl sulfoxide, 1 μL 17β-estradiol (100 nmol/L), 1 μL LY294002 (10 μmol/L), and 1 μL PD98059 (30 μmol/L) were added in group NC, group PE, group AI, and group EI respectively, and the last two groups were added with 1 μL 17β-estradiol (100 nmol/L) in addition. At post culture hour (PCH) 0 (immediately after culture), 24, 48, 72, 5 wells of cells from each group were collected to detect the proliferation activity of cells by cell counting kit 8 and microplate reader. (3) HaCaT cells in logarithmic growth phase were collected, grouped, and treated with the above-mentioned methods, with 3 wells in each group. At PCH 72, cell cycle distribution was detected by flow cytometer to calculate proliferation index (PI) of cells. (4) HaCaT cells in logarithmic growth phase were collected, grouped, and treated with the above-mentioned methods, with 3 dishes in each group. At PCH 72, the protein levels of phosphorylated Akt (p-Akt), phosphorylated ERK (p-ERK), and PCNA were determined with Western blotting. The cell experiments were repeated for 3 times. Data were processed with t test, one-way analysis of variance, analysis of variance of factorial design, and LSD test. RESULTS: (1) The epidermis thickness of mice in ovariectomized group was (33.5±3.0) μm, which was obviously thinner than that in estrus group [(51.4±3.1) μm, t=20.7, P<0.01]. The PCNA-positive cells mainly aggregated in the basal layer of epidermis of mice in two groups. The number of PCNA-positive cells in epidermis of mice in ovariectomized group was 37±12 per 200 fold visual field, obviously fewer than that in estrus group (96±15 per 200 fold visual field, t=15.3, P<0.01). (2) During PCH 0 to 48, there were no significant differences in the proliferation activity of cells between group PE and group NC (with P values above 0.05). At PCH 72, compared with that in group NC, the proliferation activity of cells in group PE was obviously increased (P<0.01). The proliferation activity of cells in groups AI and EI was obviously lower than that in the previous two groups (with P values below 0.01). (3) Compared with that in group NC [(51.6±1.1)%], the PI of cells in group PE was obviously increased [(58.5±0.8)%, P<0.05]. The PI values of cells in groups AI and EI were (34.9±0.8)% and (48.2±0.4)% respectively, both obviously lower than those in the previous two groups (with P values below 0.01). (4) Compared with that of group NC (0.566±0.034), the protein level of p-Akt in cells of group PE was significantly increased (1.048±0.077, P<0.01). Compared with that of group PE, the protein level of p-Akt was obviously decreased in cells of groups AI and EI (respectively 0.682±0.095 and 0.672±0.019, with P values below 0.01). Compared with that of group NC (0.469±0.013), the protein level of p-ERK obviously increased in cells of groups PE, AI, and EI (respectively 1.064±0.089, 1.010±0.038, 0.778±0.065, with P values below 0.01). The protein level of p-ERK in cells of group EI was obviously lower than that in group PE (P<0.01). Compared with that of group NC (0.386±0.053), the protein level of PCNA was obviously increased in cells of group PE (0.743±0.043, P<0.01). The protein levels of PCNA in cells of groups AI and EI were 0.264±0.019 and 0.223±0.065 respectively, both obviously lower than those in the previous two groups (with P values below 0.01). CONCLUSIONS: Lack of estrogen damages the growth ability of epidermis of mice. Estrogen (17β-estradiol) can promote the proliferation of HaCaT cells by increasing the expression of PCNA via activating ERK/Akt signaling pathway.[Abstract] [Full Text] [Related] [New Search]