These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sebacinales - one thousand and one interactions with land plants. Author: Weiß M, Waller F, Zuccaro A, Selosse MA. Journal: New Phytol; 2016 Jul; 211(1):20-40. PubMed ID: 27193559. Abstract: 20 I 21 II 21 III 23 IV 29 V 33 VI 35 36 36 References 36 SUMMARY: Root endophytism and mycorrhizal associations are complex derived traits in fungi that shape plant physiology. Sebacinales (Agaricomycetes, Basidiomycota) display highly diverse interactions with plants. Although early-diverging Sebacinales lineages are root endophytes and/or have saprotrophic abilities, several more derived clades harbour obligate biotrophs forming mycorrhizal associations. Sebacinales thus display transitions from saprotrophy to endophytism and to mycorrhizal nutrition within one fungal order. This review discusses the genomic traits possibly associated with these transitions. We also show how molecular ecology revealed the hyperdiversity of Sebacinales and their evolutionary diversification into two sister families: Sebacinaceae encompasses mainly ectomycorrhizal and early-diverging saprotrophic species; the second family includes endophytes and lineages that repeatedly evolved ericoid, orchid and ectomycorrhizal abilities. We propose the name Serendipitaceae for this family and, within it, we transfer to the genus Serendipita the endophytic cultivable species Piriformospora indica and P. williamsii. Such cultivable Serendipitaceae species provide excellent models for root endophytism, especially because of available genomes, genetic tractability, and broad host plant range including important crop plants and the model plant Arabidopsis thaliana. We review insights gained with endophytic Serendipitaceae species into the molecular mechanisms of endophytism and of beneficial effects on host plants, including enhanced resistance to abiotic and pathogen stress.[Abstract] [Full Text] [Related] [New Search]