These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: EGFR-Mediated Reactivation of MAPK Signaling Induces Acquired Resistance to GSK2118436 in BRAF V600E-Mutant NSCLC Cell Lines.
    Author: Kim SM, Kim H, Jang KW, Kim MH, Sohn J, Yun MR, Kang HN, Kang CW, Kim HR, Lim SM, Moon YW, Kim JH, Paik S, Cho BC.
    Journal: Mol Cancer Ther; 2016 Jul; 15(7):1627-36. PubMed ID: 27196768.
    Abstract:
    Although treatment of BRAF V600E-mutant non-small cell lung cancer (NSCLC(V600E)) with GSK2118436 has shown an encouraging efficacy, most patients develop resistance. To investigate the mechanisms of acquired resistance to GSK2118436 in NSCLC(V600E), we established GSK2118436-resistant (GSR) cells by exposing MV522 NSCLC(V600E) to increasing GSK2118436 concentrations. GSR cells displayed activated EGFR-RAS-CRAF signaling with upregulated EGFR ligands and sustained activation of ERK1/2, but not MEK1/2, in the presence of GSK2118436. Treatment of GSR cells with GSK2118436 enhanced EGFR-mediated RAS activity, leading to the formation of BRAF-CRAF dimers and transactivation of CRAF. Interestingly, sustained activation of ERK1/2 was partly dependent on receptor-interacting protein kinase-2 (RIP2) activity, but not on MEK1/2 activity. Combined BRAF and EGFR inhibition blocked reactivation of ERK signaling and improved efficacy in vitro and in vivo Our findings support the evaluation of combined BRAF and EGFR inhibition in NSCLC(V600E) with acquired resistance to BRAF inhibitors. Mol Cancer Ther; 15(7); 1627-36. ©2016 AACR.
    [Abstract] [Full Text] [Related] [New Search]