These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr). Author: Lo SH, Senthil Raja D, Chen CW, Kang YH, Chen JJ, Lin CH. Journal: Dalton Trans; 2016 Jun 21; 45(23):9565-73. PubMed ID: 27198203. Abstract: In our novel green approach, the waste polyethylene terephthalate (PET) bottle material has effectively been used as the starting precursor instead of terephthalic acid for the synthesis of five terephthalate based nanoporous trivalent metal-organic frameworks (MOFs) namely MIL-47, MIL-53(Cr), MIL-53(Al), MIL-53(Ga), and MIL-101(Cr). The optimum reaction parameters to achieve the green synthesis were studied. These MOFs were structurally identified by using powder X-ray diffraction (PXRD) measurements. Scanning electron microscopy (SEM) images confirm the particle nature and size of the synthesized MOFs. Nitrogen gas sorption measurements have been done for some of the MOFs to check their porous properties. All the characterization techniques strongly supported that the synthesized MOFs using PET are similar to their literature reports. The gas adsorption studies for the synthesized MIL-53(Cr) and MIL-101(Cr) showed their significant gas uptake capability towards CO2 and H2 gases. Further, the synthesized MIL-47 and MIL-101(Cr) have been tested for their catalytic ability in chemical fixation of CO2 gas through the conversion of CO2 and epoxides to the corresponding cyclic carbonates which shows promising results to use them as catalysts.[Abstract] [Full Text] [Related] [New Search]