These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 17O-NMR studies of the conformational and dynamic properties of enkephalins in aqueous and organic solutions using selectively labeled analogues.
    Author: Sakarellos C, Gerothanassis IP, Birlirakis N, Karayannis T, Sakarellos-Daitsiotis M, Marraud M.
    Journal: Biopolymers; 1989 Jan; 28(1):15-26. PubMed ID: 2720102.
    Abstract:
    The synthesis of Leu-enkephalin selectively 17O-enriched in Gly2 and Gly3 is reported. The 17O-nmr chemical shifts of [17O-Gly2, Leu5]- and [17O-Gly3, Leu5]-enkephalins in H2O are almost identical and independent of the pH. Since hydrogen bonding is the dominant factor governing the chemical shifts of the peptide oxygen, it can be concluded that the hydration state of both oxygens is identical and independent of the pH. The 17O chemical shifts of the [17O-Leu5]-enkephalin terminal carboxyl group at pH approximately 1.9 and 5.6 are very different in H2O but very similar in CH3CN/DMSO (4:1) solution. This suggests that the protonation state of the carboxyl group at both pH values in CH3CN/DMSO solution is the same and consequently that Leu-enkephalin exists in the neutral form at pH approximately 5.6. In this organic mixed solvent system both Gly2 and Gly3 oxygen resonances exhibit a significant shift to high frequency by the same extent (delta delta approximately 30 ppm). It is concluded that both peptide oxygens are not hydrogen bonded to an appreciable extent and that no specific 2----5 hydrogen bonding exists to an appreciable extent. This conclusion is in agreement with the energy of activation for molecular rotation, as determined from T1 measurements, which was found to be almost identical for both [17O-Gly2, Leu5]- and [17O-Gly3, Leu5]-enkephalins in CH3CN/DMSO (4:1) mixed solvent.
    [Abstract] [Full Text] [Related] [New Search]