These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prejunctional modulation of acetylcholine release from the skeletal neuromuscular junction: link between positive (nicotinic)- and negative (muscarinic)-feedback modulation.
    Author: Vizi ES, Somogyi GT.
    Journal: Br J Pharmacol; 1989 May; 97(1):65-70. PubMed ID: 2720313.
    Abstract:
    1. Presynaptic receptor-mediated modulation of stimulation-evoked [3H]-acetylcholine[( 3H]-ACh) release from the neuromuscular junction was studied in the region of the mouse hemidiaphragm which contains the motor endplates, and which can easily be loaded with [3H]-choline. This method made it possible to detect exclusively the [Ca2+]0-dependent, quantal release of [3H]-ACh in response to axonal stimulation. 2. Atropine enhanced, and non-depolarizing muscle relaxants [+)-tubocurarine, pancuronium and pipecuronium) reduced, the release of [3H]-ACh evoked by high frequency trains of stimulation (50 Hz, 40 shocks) of the phrenic nerve. The effect of (+)-tubocurarine was frequency-dependent as at 5 Hz (40 shocks) it was less effective than at 50 Hz. The resting release of [3H]-ACh was not affected by these compounds. These findings indicate that ACh released into the synaptic gap by axonal firing reaches a concentration sufficient to influence its own release by a prejunctional effect. 3. The anticholinesterase, physostigmine sulphate, enhanced the release of [3H]-ACh in a concentration-dependent manner. This effect was mediated via prejunctional nicotinic receptor stimulation: (+)-tubocurarine, pancuronium and pipecuronium completely prevented the effect of physostigmine. 4. When the prejunctional nicotinic and muscarinic receptors were stimulated by a high concentration of extracellular ACh which had accumulated in the junctional gap in the presence of physostigmine, atropine did not influence the evoked release of [3H]-ACh. However, when the effect of endogenous ACh on nicotinic receptors was prevented by (+)-tubocurarine, atropine enhanced the release. 5. It is concluded that quantally-released ACh from motor endplates is subject to prejunctional automodulation: (a) ACh facilitates its own release via an effect on prejunctional nicotinic receptors (positive feedback), (b) ACh release is reduced by an action on muscarinic receptors. When the nicotinic receptor-mediated facilitation is fully operative, the muscarinic receptor-mediated negative feedback is much less effective. It is supposed that there is a link between the two feedback mechanisms possibly at the level of the second messenger system(s).
    [Abstract] [Full Text] [Related] [New Search]