These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regional specificity of testosterone regulation of proopiomelanocortin gene expression in the arcuate nucleus of the male rat brain.
    Author: Chowen-Breed JA, Clifton DK, Steiner RA.
    Journal: Endocrinology; 1989 Jun; 124(6):2875-81. PubMed ID: 2721451.
    Abstract:
    Endogenous opioid peptides have been implicated as mediators in the negative feedback action of gonadal steroids on GnRH secretion. We have previously demonstrated that testosterone stimulates POMC gene expression in neurons of the arcuate nucleus. However, the wide distribution and variety of actions attributed to the numerous arcuate POMC neurons suggest that these cells may be heterogeneous in their responsiveness to steroid hormones. We tested the hypothesis that testosterone modulates a select population of POMC neurons within the arcuate nucleus of the adult male rat by comparing POMC mRNA signal levels throughout the arcuate nucleus of intact, castrated, and castrated testosterone-replaced adult males. Adult male rats were castrated and implanted (sc) with a Silastic capsule (30 mm) that was either empty (n = 6) or filled with crystalline testosterone (n = 5). Control sham-operated animals (n = 6) were left intact. In each animal the arcuate nucleus was divided into four equal rostral-caudal areas within which we measured POMC mRNA content in individual cells. We report that the effects of castration and testosterone replacement are observed in POMC neurons located in the most rostral region of the arcuate nucleus. After castration, POMC mRNA content was reduced in cells of the most rostral arcuate area (intact, 152 +/- 5 grains/cell; castrate, 119 +/- 2 grains/cell; P less than 0.0005), and replacement with physiological levels of testosterone prevented the decline in POMC mRNA levels so that they remained equivalent to that of the intact animal (castrated testosterone-replaced, 153 +/- 6 grains/cell). There was no significant difference in POMC mRNA signal between intact and castrated testosterone-replaced animals in the most rostral area. POMC neurons in the more caudal aspect of the arcuate (75% of the nucleus) were unaffected by the treatments; alternatively, it is possible that a real change in POMC message content in a subpopulation of cells was obscured by larger numbers of nonresponding cells within the same tissue sections. Based on these observations we conclude that there is a heterogeneous population of POMC neurons in the arcuate nucleus and that testosterone regulates POMC gene expression in a select group of these cells located in the rostral portion of the arcuate nucleus.
    [Abstract] [Full Text] [Related] [New Search]