These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physiological strain to prolonged exercise bouts at the walk-run transition speeds depends on locomotion mode in healthy untrained men. Author: Monteiro WD, Cunha FA, Ivo EX, Freire RA, Silva BS, Farinatti P. Journal: Scand J Med Sci Sports; 2017 Jul; 27(7):762-769. PubMed ID: 27230405. Abstract: This study compared the physiological strain induced by prolonged walking and running performed at the walk-run transition speed (WRTS) in healthy untrained men. Twenty volunteers (age: 28 ± 5.01 years; height: 174.0 ± 0.3 cm; body mass: 74.5 ± 0.6 kg) underwent the following: (a) ramp-incremental maximal cardiopulmonary exercise test (CPET); (b) specific protocol to detect the WRTS; and (c) two 30-min walking and running bouts at WRTS (mean ± SD: 6.9 ± 0.06 km/h). Expired gases were collected during exercise bouts via the metabolic cart. A significant effect of locomotion mode (F = 4.8, P < 0.001) was observed with running resulting in higher cardiorespiratory responses than walking at the WRTS (oxygen uptake: mean difference = 0.26 L/min; pulmonary ventilation: mean difference = 5.53 L/min; carbon dioxide output: mean difference = 0.32 L/min; heart rate: mean difference = 13 beats/min; total energy expenditure: mean difference = 59 kcal). The rating of perceived exertion was similar across locomotion modes (mean difference = 0.3; P = 0.490). In conclusion, running promoted greater cardiorespiratory responses than walking at the WRTS in untrained healthy men. These data might have practical impact on aerobic training performed at intensities corresponding to WRTS.[Abstract] [Full Text] [Related] [New Search]