These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: β-Caryophyllene attenuates palmitate-induced lipid accumulation through AMPK signaling by activating CB2 receptor in human HepG2 hepatocytes. Author: Kamikubo R, Kai K, Tsuji-Naito K, Akagawa M. Journal: Mol Nutr Food Res; 2016 Oct; 60(10):2228-2242. PubMed ID: 27234712. Abstract: SCOPE: Nonalcoholic fatty liver disease is currently the most common chronic liver disease worldwide, characterized by excessive hepatic lipid accumulation without significant ethanol consumption. We have performed a screening for medicinal foods that inhibit hepatocytic lipid accumulation through activation of AMP-activated protein kinase (AMPK), which is a critical regulator of the hepatic lipid metabolism. METHODS AND RESULTS: We found that clove (Syzygium aromaticum), which is commonly used as a spice, markedly inhibits palmitate-inducible lipid accumulation in human HepG2 hepatocytes. Analyses of the clove extracts found that β-caryophyllene, an orally-active cannabinoid, is the principal suppressor of the lipid accumulation, and stimulates the phosphorylation of AMPK and acetyl-CoA carboxylase 1 (ACC1). Our data also showed that β-caryophyllene prevents the translocation of sterol regulatory element-binding protein-1c (SREBP-1c) into the nucleus and forkhead box protein O1 (FoxO1) into the cytoplasm through AMPK signaling, and consequently, induces a significant downregulation of fatty acid synthase (FAS) and upregulation of adipose triglyceride lipase, respectively. Moreover, we demonstrated that the β-caryophyllene-induced activation of AMPK could be mediated by the cannabinoid type 2 receptor-dependent Ca2+ signaling pathway. CONCLUSION: Our results suggest that β-caryophyllene has the potential efficacy in preventing and ameliorating nonalcoholic fatty liver disease and its associated metabolic disorders.[Abstract] [Full Text] [Related] [New Search]