These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Systematic biomarker discovery and coordinative validation for different primary nephrotic syndromes using gas chromatography-mass spectrometry.
    Author: Lee JE, Lee YH, Kim SY, Kim YG, Moon JY, Jeong KH, Lee TW, Ihm CG, Kim S, Kim KH, Kim DK, Kim YS, Kim CD, Park CW, Lee do Y, Lee SH.
    Journal: J Chromatogr A; 2016 Jul 01; 1453():105-15. PubMed ID: 27247212.
    Abstract:
    The goal of this study is to identify systematic biomarker panel for primary nephrotic syndromes from urine samples by applying a non-target metabolite profiling, and to validate their utility in independent sampling and analysis by multiplex statistical approaches. Nephrotic syndrome (NS) is a nonspecific kidney disorder, which is mostly represented by minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), and membranous glomerulonephritis (MGN). Since urine metabolites may mirror disease-specific functional perturbations in kidney injury, we examined urine samples for distinctive metabolic changes to identify biomarkers for clinical applications. We developed unbiased multi-component covarianced models from a discovery set with 48 samples (12 healthy controls, 12 MCD, 12 FSGS, and 12 MGN). To extensively validate their diagnostic potential, new batch from 54 patients with primary NS were independently examined a year after. In the independent validation set, the model including citric acid, pyruvic acid, fructose, ethanolamine, and cysteine effectively discriminated each NS using receiver operating characteristic (ROC) analysis except MCD-MGN comparison; nonetheless an additional metabolite multi-composite greatly improved the discrimination power between MCD and MGN. Finally, we proposed the re-constructed metabolic network distinctively dysregulated by the different NSs that may deepen comprehensive understanding of the disease mechanistic, and help the enhanced identification of NS and therapeutic plans for future.
    [Abstract] [Full Text] [Related] [New Search]