These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transgenic expression of non-structural genes of Theiler's virus suppresses initial viral replication and pathogenesis of demyelination.
    Author: Kang HS, Myoung J, So EY, Bahk YY, Kim BS.
    Journal: J Neuroinflammation; 2016 Jun 01; 13(1):133. PubMed ID: 27250711.
    Abstract:
    BACKGROUND: Chronic infection with Theiler's murine encephalomyelitis virus (TMEV) in susceptible SJL/J mice induces an immune-mediated demyelinating disease and has extensively been used as a relevant infectious model for multiple sclerosis (MS). Infection of the host with many other viruses also leads to acute or chronic inflammatory diseases in the central nervous system (CNS). Levels of viral load in the host often play a critical role in the pathogenesis of virus-induced diseases. Thus, the inhibition of viral replication in the host against a broad spectrum of similar viruses is critically important for preventing the viral pathogenicity. METHODS: P2/P3-expressing transgenic (B6 X SJL)F1 founders were generated and bred onto the C57BL/6 and SJL/J backgrounds. Differences in the development of demyelinating disease were compared. Viral persistence, cytokine production, and immune responses in the CNS of infected control and P2/P3-Tg mice were analyzed after infection using quantitative PCR, ELISA, and flow cytometry. Various cell types from the control and P2/P3-Tg mice, as well as cells transfected in vitro with the P2 and/or P3 regions, were also analyzed for viral replication and innate cytokine production. RESULTS: P2/P3-transgenic (P2/P3-Tg) mice carrying the viral non-structural protein genes displayed significantly reduced virus-specific T cell responses in the CNS against both the structural and non-structural proteins. Consequently, viral loads in the CNS were greater in the Tg mice during the chronic infection. However, P2/P3-Tg SJL mice exhibited reduced disease incidence and less severe clinical symptoms than did their non-transgenic littermates. Interestingly, P2/P3-Tg mice showed low viral loads in the CNS at a very early period after infection (1-3 days) with TMEV and related EMCV but not unrelated VSV. Cells from P2/P3-Tg mice and cells transfected with the P2 and/or P3 regions in vitro yielded also lower viral replication but higher IFN-α/β production. CONCLUSIONS: This study demonstrates that the expression of viral non-structural genes in mice inhibits initial viral replication and suppresses sustaining pathogenic anti-viral immune responses to broad viral determinants. It appears that the elevation of innate immune cytokines produced in the cells expressing the non-structural viral genes upon viral infection is responsible for the inhibitions. The inhibition is partially virus-specific as it is more efficient for a related virus compared to an unrelated virus, suggesting a role for the similarity in the viral genome structures. Therefore, the expression of viral non-structural genes may serve as a useful new method to prevent a broadly virus-specific pathogenesis in the hosts.
    [Abstract] [Full Text] [Related] [New Search]