These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exercise duration-matched interval and continuous sprint cycling induce similar increases in AMPK phosphorylation, PGC-1α and VEGF mRNA expression in trained individuals.
    Author: Taylor CW, Ingham SA, Hunt JE, Martin NR, Pringle JS, Ferguson RA.
    Journal: Eur J Appl Physiol; 2016 Aug; 116(8):1445-54. PubMed ID: 27251406.
    Abstract:
    PURPOSE: The effects of low-volume interval and continuous 'all-out' cycling, matched for total exercise duration, on mitochondrial and angiogenic cell signalling was investigated in trained individuals. METHODS: In a repeated measures design, 8 trained males ([Formula: see text], 57 ± 7 ml kg(-1) min(-1)) performed two cycling exercise protocols; interval (INT, 4 × 30 s maximal sprints interspersed by 4 min passive recovery) or continuous (CON, 2 min continuous maximal sprint). Muscle biopsies were obtained before, immediately after and 3 h post-exercise. RESULTS: Total work was 53 % greater (P = 0.01) in INT compared to CON (71.2 ± 7.3 vs. 46.3 ± 2.7 kJ, respectively). Phosphorylation of AMPK(Thr172) increased by a similar magnitude (P = 0.347) immediately post INT and CON (1.6 ± 0.2 and 1.3 ± 0.3 fold, respectively; P = 0.011), before returning to resting values at 3 h post-exercise. mRNA expression of PGC-1α (7.1 ± 2.1 vs. 5.5 ± 1.8 fold; P = 0.007), VEGF (3.5 ± 1.2 vs. 4.3 ± 1.8 fold; P = 0.02) and HIF-1α (2.0 ± 0.5 vs. 1.5 ± 0.3 fold; P = 0.04) increased at 3 h post-exercise in response to INT and CON, respectively; the magnitude of which were not different between protocols. CONCLUSIONS: Despite differences in total work done, low-volume INT and CON 'all-out' cycling, matched for exercise duration, provides a similar stimulus for the induction of mitochondrial and angiogenic cell signalling pathways in trained skeletal muscle.
    [Abstract] [Full Text] [Related] [New Search]