These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: From natural to biomimetic: The superhydrophobicity and the contact time.
    Author: Liang YH, Peng J, Li XJ, Xu JK, Zhang ZH, Ren LQ.
    Journal: Microsc Res Tech; 2016 Aug; 79(8):712-20. PubMed ID: 27252147.
    Abstract:
    The superhydrophobicities and the contact time of lotus leaf and reed leaf were investigated. The results indicated that both lotus leaf and reed leaf have good superhydrophobic properties, and the water contact time was 12.7 and 14.7 ms on the surface of lotus leaf and reed leaf, respectively. Surface structure plays a key role in the different contacting times. Homogeneous distribution of papillae on the surface of lotus leaf was more helpful to reduce the contact time than anisotropic groove-shape on the surface of reed leaf. Based on the bionics coupling theory, the bionics sample possessing similar lotus-leaf-like surface structure on the aluminum alloy was designed and fabricated successfully. The water contact angle was about 153 ± 2°, sliding angle less than 5°, and the water contact time was 13.4 ms on the surface of bionics sample, which presented excellent superhydrophobic property, and achieved the aim of bionic design. Microsc. Res. Tech. 79:712-720, 2016. © 2016 Wiley Periodicals, Inc.
    [Abstract] [Full Text] [Related] [New Search]