These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrospinning Directly Synthesized Porous TiO2 Nanofibers Modified by Graphitic Carbon Nitride Sheets for Enhanced Photocatalytic Degradation Activity under Solar Light Irradiation.
    Author: Adhikari SP, Awasthi GP, Kim HJ, Park CH, Kim CS.
    Journal: Langmuir; 2016 Jun 21; 32(24):6163-75. PubMed ID: 27254544.
    Abstract:
    We report a direct approach to the fabrication of a composite made of porous TiO2 nanofibers (NFs) and graphitic carbon nitride (g-C3N4) sheets, by means of an angled two-nozzle electrospinning combined with calcination process. Different wt % amounts of g-C3N4 particles in a polymer solution from one nozzle and TiO2 precursors containing the same polymer solution from another nozzle were electrospun and deposited on the collector. Structural characterizations confirm a well-defined morphology of the TiO2/g-C3N4 composite in which the TiO2 NFs are uniformly attached on the g-C3N4 sheet. This proper attachment of TiO2 NFs on the g-C3N4 sheets occurred during calcination. The prepared composites showed the enhanced photocatalytic activity over the photodegradation of rhodamine B and reactive black 5 under natural sunlight. Here, the synergistic effect between the g-C3N4 sheets and the TiO2 NFs having anisotropic properties enhanced the photogenerated electron-hole pair separation and migration, which was confirmed by the measurement of photoluminescence spectra, cyclic voltammograms, and electrochemical impedance spectra. The direct synthesis approach that is established here for such kinds of sheetlike structure and porous NFs composites could provide new insights for the design of high-performance energy conversion catalysts.
    [Abstract] [Full Text] [Related] [New Search]