These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Soft drink wastewater treatment by electrocoagulation-electrooxidation processes.
    Author: Linares Hernández I, Barrera Díaz C, Valdés Cerecero M, Almazán Sánchez PT, Castañeda Juárez M, Lugo Lugo V.
    Journal: Environ Technol; 2017 Feb; 38(4):433-442. PubMed ID: 27257937.
    Abstract:
    The aim of this work was to implement a coupled system, a monopolar Electrocoagulation (EC)-Electrooxidation (EO) processes, for the treatment of soft drink wastewater. For the EC test, Cu-Cu, anode-cathode were used at current densities of 17, 51 and 68 mA cm-2. Only 37.67% of chemical oxygen demand (COD) and 27% of total organic carbon (TOC) were removed at 20 min with an optimum pH of 8, this low efficiency can be associated with the high concentration of inorganic ions which inhibit the oxidation of organic matter due to their complexation with copper ions. Later EO treatment was performed with boron-doped diamond-Cu electrodes and a current density of 30 Am-2. The coupled EC-EO system was efficient to reduce organic pollutants from initial values of 1875 mg L-1 TOC and 4300 mg L-1 COD, the removal efficiencies were 75% and 85%, respectively. Electric energy consumption to degrade a kilogram of a pollutant in the soft drink wastewater using EC was 3.19 kWh kg-1 TOC and 6.66 kWh kg-1 COD. It was concluded that the coupled system EC-EO was effective for the soft drink wastewater treatment, reducing operating costs and residence time, and allowing its reuse in indirect contact with humans, thus contributing to the sustainable reuse as an effluent of industrial wastewater.
    [Abstract] [Full Text] [Related] [New Search]