These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of various storage conditions on the stability of quinolones in raw milk. Author: Chen M, Wen F, Wang H, Zheng N, Wang J. Journal: Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1147-54. PubMed ID: 27258809. Abstract: Research on the storage stability of antibiotic residues in milk is important for method development or validation, milk quality control and risk assessment during screening, confirmation, qualitative or quantitative analysis. This study was conducted using UPLC-MS/MS to determine the stability of six quinolones - ciprofloxacin (CIP), danofloxacin (DAN), enrofloxacin (ENR), sarafloxacin (SAR), difloxacin (DIF) and flumequine (FLU) - in raw milk stored under various conditions to investigate if quinolones degrade during storage of milk, and finally to determine optimal storage conditions for analysis and scientific risk assessment of quinolone residues in raw milk. The storage conditions included different temperatures and durations (4°C for 4, 8, 24 and 48 h; -20°C for 1, 7 and 30 days; -80°C for 1, 7 and 30 days), thawing temperatures (25, 40 and 60°C), freeze-thaw cycles (1-5), and the addition of different preservatives (sodium thiocyanate, sodium azide, potassium dichromate, bronopol and methanal). Most quinolones exhibited high stability at 4°C for up to 24 h, but began to degrade after 48 h. In addition, no degradation of quinolones was seen when milk samples were stored at -20°C for up to 7 days; however, 30 days of storage at -20°C resulted in a small amount of degradation (about 30%). Similar results were seen when samples were stored at -80°C. Moreover, no losses were observed when frozen milk samples were thawed at 25, 40 or 60°C. All the quinolones of interest, except sarafloxacin, were stable when milk samples were thawed at 40°C once and three times, but unstable after five freeze-thaw cycles. Preservatives affected the stability of quinolones, but the effects differed depending on the preservative and quinolone. The results of this study indicate optimum storage protocols for milk samples, so that residue levels reflect those at the time of initial sample analysis, and should improve surveillance programmes for quinolones in raw milk.[Abstract] [Full Text] [Related] [New Search]