These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Manganese ion concentration affects production of human core 3 O-glycan in Saccharomyces cerevisiae. Author: Saito F, Sakamoto I, Kanatani A, Chiba Y. Journal: Biochim Biophys Acta; 2016 Sep; 1860(9):1809-20. PubMed ID: 27259834. Abstract: BACKGROUND: Production of various mucin-like glycoproteins could be useful for development of antibodies specific to disease-related glycoproteins as well as for the biosynthesis of clinically useful glycoproteins. A Saccharomyces cerevisiae strain capable of in vivo production of mucin-type core 1 structure (Galβ1-3GalNAcα1-O-Ser/Thr) has been reported, but a strain producing core 3 structure (GlcNAcβ1-3GalNAcα1-O-Ser/Thr) has not been constructed. METHODS: To generate core 3-producing strain, genes encoding uridine diphosphate (UDP)-Gal-4-epimerase, UDP-GalNAc transporter, UDP-GlcNAc transporter, and two glycosyltransferases were integrated into the genome. A Mucin-1-derived acceptor peptide (MUC1ap) was expressed as an acceptor. The amount of the resulting modified peptide was analyzed by HPLC. RESULTS: Introduction of a codon-optimized UDP-GlcNAc:βGal β-1,3-N-acetylglucosaminyltransferase 6 (β3Gn-T6) gene yielded increases in β3Gn-T6 activity but did not alter the level of core 3 production. The highest in vitro activity of β3Gn-T6 was observed at Mn(2+) concentrations of 10mM and above. Supplementation of MnCl2 to the culture medium yielded increases of up to 25% in the accumulation of core 3 on the MUC1ap. The yeast invertase from the core 3-producing strain was less extensively N-glycosylated; however, it was partially restored by the addition of MnCl2 to the medium. CONCLUSIONS: Physiological Mn(2+) concentration in S. cerevisiae was insufficient to facilitate optimal synthesis of core 3. Mn(2+) supplementation led to up-regulation of reaction of glycosylation in the Golgi, resulting in increases of core 3 production. GENERAL SIGNIFICANCE: This study reveals that control of Mn(2+) concentration is important for production of specific mammalian-type glycans in S. cerevisiae.[Abstract] [Full Text] [Related] [New Search]