These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chemically modified graphene films for high-performance optical NO2 sensors. Author: Xing F, Zhang S, Yang Y, Jiang W, Liu Z, Zhu S, Yuan X. Journal: Analyst; 2016 Aug 07; 141(15):4725-32. PubMed ID: 27265308. Abstract: Various graphene-based gas sensors that operate based on the electrical properties of graphene have been developed for accurate detection of gas components. However, electronic graphene-based gas sensors are unsafe under explosive atmospheres and sensitive to electromagnetic interference. Here, a novel optical graphene-based gas sensor for NO2 detection is established based on surface chemical modification of high-temperature-reduced graphene oxide (h-rGO) films with sulfo groups. Sulfo group-modified h-rGO (S-h-rGO) films with a thickness of several nanometers exhibit excellent performance in NO2 detection at room temperature and atmospheric pressure based on the polarization absorption effect of graphene. Initial slope analysis of the S-h-rGO sensor indicates that it has a limit of detection of 0.28 ppm and a response time of 300 s for NO2 gas sensing. Furthermore, the S-h-rGO sensor also possesses the advantages of good linearity, reversibility, selectivity, non-contact operation, low cost and safety. This novel optical gas sensor has the potential to serve as a general platform for the selective detection of a variety of gases with high performance.[Abstract] [Full Text] [Related] [New Search]