These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation on gait kinematics in Parkinson's disease: a randomized, blinded study. Author: Lizarraga KJ, Jagid JR, Luca CC. Journal: J Neurol; 2016 Aug; 263(8):1652-6. PubMed ID: 27278062. Abstract: Gait dysfunction in Parkinson's disease (PD) does not always respond to bilateral subthalamic nucleus deep brain stimulation (STN-DBS). Since right hemisphere motor networks may be dominant for gait control, identical stimulation of asymmetric circuits could account for gait dysfunction. We compared the effects of bilateral and unilateral STN-DBS on gait kinematics in PD patients who developed gait impairment after STN-DBS. Twenty-two PD patients with >50 % improvement in motor scores, but dopamine-resistant gait dysfunction 6-12 months after bilateral STN-DBS were blindly tested off dopaminergic effects in four randomly assigned DBS conditions: bilateral, right-sided, left-sided and off stimulation. Motor scores (MDS-UPDRS III), gait scores (MDS-UPRDS 2.11-2.13 + 3.9-3.13), turning time (seconds), stride length (meters) and velocity (meters/second) were measured 1 h after DBS changes. Motor and gait scores significantly improved with bilateral versus unilateral STN-DBS. Stride length and velocity (0.95 ± 0.06, 0.84 ± 0.07) significantly improved with bilateral (1.09 ± 0.04, 0.95 ± 0.05), right-sided (1.06 ± 0.04, 0.92 ± 0.05) and left-sided stimulation (1.01 ± 0.05, 0.90 ± 0.05) (p < 0.05). Stride length significantly improved with right-sided versus left-sided (0.05 ± 0.02) and bilateral versus left-sided stimulation (0.07 ± 0.02) (p < 0.05). Turning time (4.89 ± 0.6) tended to improve with bilateral (4.13 ± 0.5) (p = 0.15) and right-sided (4.27 ± 0.6) (p = 0.2) more than with left STN-DBS (4.69 ± 0.5) (p = 0.5). Bilateral STN-DBS yields greater improvement in motor and gait scores in PD patients. Yet, unilateral stimulation has similar effects on gait kinematics. Particularly, right-sided stimulation might produce slightly greater improvements. Although the clinical relevance of differential programming of right versus left-sided STN-DBS is unclear, this approach could be considered in the management of treatment-resistant gait dysfunction in PD.[Abstract] [Full Text] [Related] [New Search]