These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Catalytic decomposition of gaseous PCDD/Fs over V2O5/TiO2-CNTs catalyst: Effect of NO and NH3 addition. Author: Wang Q, Hung PC, Lu S, Chang MB. Journal: Chemosphere; 2016 Sep; 159():132-137. PubMed ID: 27285382. Abstract: There is a strong need for a control technology that simultaneously achieving the abatement of PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) and nitrogen oxides (NOx) emissions in waste incineration industry. TiO2 and carbon nanotubes (CNTs) were used as composite carriers to support vanadium oxide as an innovative catalyst to simultaneously control PCDD/Fs and NO emissions. The removal efficiencies (RE) of PCDD/Fs by V2O5/TiO2-CNTs catalyst under a space velocity (SV) of 20,000 h(-1) reaches 99.9% at 150 °C and adsorption is supposed to be the main mechanism at this temperature. The influence of NONH3 reaction on PCDD/Fs catalytic reaction is investigated. The kinetics analysis exhibits that the addition of NO and NH3 reduces the activation energies for OCDD (octachlorodibenzo-p-dioxin) and OCDF (octachlorodibenzofuran) decomposition to 3.6 kJ/mol and 5.4 kJ/mol respectively.[Abstract] [Full Text] [Related] [New Search]