These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exposure to phenanthrene and depuration: Changes on gene transcription, enzymatic activity and lipid peroxidation in gill of scallops Nodipecten nodosus.
    Author: Piazza RS, Trevisan R, Flores-Nunes F, Toledo-Silva G, Wendt N, Mattos JJ, Lima D, Taniguchi S, Sasaki ST, Mello ÁC, Zacchi FL, Serrano MA, Gomes CH, Bícego MC, Almeida EA, Bainy AC.
    Journal: Aquat Toxicol; 2016 Aug; 177():146-55. PubMed ID: 27286572.
    Abstract:
    Understanding the mechanism of phenanthrene (PHE) biotransformation and related cellular responses in bivalves can be an important tool to elucidate the risks of polycyclic aromatic hydrocarbons (PAHs) to aquatic organisms. In the present study it was analyzed the transcriptional levels of 13 biotransformation genes related to cytochrome P450 (CYP), glutathione S-transferase (GST), sulfotransferase (SULT), flavin-containing monooxygenase and fatty acid-binding proteins by qPCR in gill of scallops Nodipecten nodosus exposed for 24 or 96h to 50 or 200μgL(-1) PHE (equivalent to 0.28 and 1.12μM, respectively), followed by depuration in clean water for 96h (DEP). Likewise, it was quantified the activity of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH), GST and levels of lipid peroxidation. Increased transcriptional levels of CYP2UI-like, CYP2D20-like, CYP3A11-like, GSTomega-like, SULT1B1-like genes were detected in organisms exposed to PHE for 24 or 96h. In parallel, GR and GPX activities increased after 96h exposure to 200μgL(-1) PHE and G6PDH activity increased after 24h exposure to 50μgL(-1) PHE. This enhancement of antioxidant and phase I and II biotransformation systems may be related to the 2.7 and 12.5 fold increases in PHE bioaccumulation after 96h exposure to 50 and 200μgL(-1) PHE, respectively. Interestingly, DEP caused reestablishment of GPX and GR activity, as well as to the transcript levels of all upregulated biotransformation genes (except for SULT1B1-like). Bioaccumulated PHE levels decreased 2.5-2.9 fold after depuration, although some biochemical and molecular modifications were still present. Lipid peroxidation levels remained lower in animals exposed to 200μgL(-1) PHE for 24h and DEP. These data indicate that N. nodosus is able to induce an antioxidant and biotransformation-related response to PHE exposure, counteracting its toxicity, and DEP can be an effective protocol for bivalve depuration after PHE exposure.
    [Abstract] [Full Text] [Related] [New Search]