These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrocatalytic oxidation behavior of NADH at Pt/Fe3O4/reduced-graphene oxide nanohybrids modified glassy carbon electrode and its determination. Author: Roushani M, Hoseini SJ, Azadpour M, Heidari V, Bahrami M, Maddahfar M. Journal: Mater Sci Eng C Mater Biol Appl; 2016 Oct 01; 67():237-246. PubMed ID: 27287119. Abstract: We have developed Pt/Fe3O4/reduced-graphene oxide nanohybrids modified glassy carbon (Pt/Fe3O4/RGO/GC) electrode as a novel system for the preparation of electrochemical sensing platform. Characterization of as-made composite was determined using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and energy-dispersive analysis of X-ray (EDAX) where the Pt, Fe, Si, O and C elements were observed. The Pt/Fe3O4/RGO/GC electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect between Pt, Fe3O4 and RGO, the nanohybrid exhibited excellent performance toward dihydronicotinamide adenine dinucleotide (NADH) oxidation in 0.1M phosphate buffer solution, pH7.0, with a low detection limit of 5nM.[Abstract] [Full Text] [Related] [New Search]