These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The lncRNA MALAT1, acting through HIF-1α stabilization, enhances arsenite-induced glycolysis in human hepatic L-02 cells. Author: Luo F, Liu X, Ling M, Lu L, Shi L, Lu X, Li J, Zhang A, Liu Q. Journal: Biochim Biophys Acta; 2016 Sep; 1862(9):1685-95. PubMed ID: 27287256. Abstract: Accelerated glycolysis, a common process in tumor cells called the Warburg effect, is associated with various biological phenomena. However, the role of glycolysis induced by arsenite, a well-established human carcinogen, is unknown. Long non-coding RNAs (lncRNAs) act as regulators in various cancers, but how lncRNAs regulate glucose metabolism remains largely unexplored. We have found that, in human hepatic epithelial (L-02) cells, arsenite increases lactate production; glucose consumption; and expression of glycolysis-related genes, including HK-2, Eno-1, and Glut-4. In L-02 cells exposed to arsenite, the lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and hypoxia inducible factors (HIFs)-α, the transcriptional regulators of cellular response to hypoxia, are over-expressed. In addition, HIF-1α, not HIF-2α, is involved in arsenite-induced glycolysis, and MALAT1 enhances arsenite-induced glycolysis. Although MALAT1 regulates HIF-α and promotes arsenite-induced glycolysis, MALAT1 promotes glycolysis through HIF-1α, not HIF-2α. Moreover, arsenite-increased MALAT1 enhances the disassociation of Von Hippel-Lindau (VHL) tumor suppressor from HIF-1α, alleviating VHL-mediated ubiquitination of HIF-1α, which causes accumulation of HIF-1α. In sum, these findings indicate that MALAT1, acting through HIF-1α stabilization, is a mediator that enhances glycolysis induced by arsenite. These results provide a link between the induction of lncRNAs and the glycolysis in cells exposed to arsenite, and thus establish a previously unknown mechanism for arsenite-induced hepatotoxicity.[Abstract] [Full Text] [Related] [New Search]