These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression and role of gap junction protein connexin43 in immune challenge-induced extracellular ATP release in Japanese flounder (Paralichthys olivaceus). Author: Li S, Peng W, Chen X, Geng X, Zhan W, Sun J. Journal: Fish Shellfish Immunol; 2016 Aug; 55():348-57. PubMed ID: 27291350. Abstract: Connexin43 (Cx43) is the best characterized gap junction protein that allows the direct exchange of signaling molecules during cell-to-cell communications. The immunological functions and ATP permeable properties of Cx43 have been insensitively examined in mammals. The similar biological significance of Cx43 in lower vertebrates, however, is not yet understood. In the present study we identified and characterized a Cx43 ortholog (termed PoCx43) from Japanese flounder (Paralichthys olivaceus) and investigated its role in immune challenge-induced extracellular ATP release. PoCx43 mRNA transcripts are widely distributed in all tested normal tissues and cells with predominant expression in the brain, and are significantly up-regulated by LPS, poly(I:C) and zymosan challenges and Edwardsiella tarda infections as well, suggesting that PoCx43 expression was modulated by the inflammatory stresses. In addition, cyclic AMP (cAMP), an essential second messenger, also plays an important role in regulating PoCx43 gene expression, by which the PoCx43-mediated gap junctional communication may be regulated. Furthermore, overexpression of PoCx43 in Japanese flounder FG-9307 cells significantly potentiates the LPS- and poly(I:C)-induced extracellular ATP release and this enhanced ATP release was attenuated by pre-incubation with Cx43 inhibitor carbenoxolone. In a complementary experiment, down-regulation of PoCx43 endogenous expression in FG-9307 cells with small interfering RNA also significantly reduced the PAMP-induced extracellular ATP release, suggesting that PoCx43 is an important ATP release conduit under the immune challenge conditions. Finally, we showed that extracellular ATP stimulation led to an increased PoCx43 expression which probably provides a feedback mechanism in regulating PoCx43 expression at the transcriptional level. These findings suggest that PoCx43 is an inducible immune response gene and an important conduit for immune challenge-induced extracellular ATP release in fish.[Abstract] [Full Text] [Related] [New Search]