These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mining the Enriched Subgraphs for Specific Vertices in a Biological Graph.
    Author: Meysman P, Saeys Y, Sabaghian E, Bittremieux W, Van de Peer Y, Goethals B, Laukens K.
    Journal: IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1496-1507. PubMed ID: 27295680.
    Abstract:
    In this paper, we present a subgroup discovery method to find subgraphs in a graph that are associated with a given set of vertices. The association between a subgraph pattern and a set of vertices is defined by its significant enrichment based on a Bonferroni-corrected hypergeometric probability value. This interestingness measure requires a dedicated pruning procedure to limit the number of subgraph matches that must be calculated. The presented mining algorithm to find associated subgraph patterns in large graphs is therefore designed to efficiently traverse the search space. We demonstrate the operation of this method by applying it on three biological graph data sets and show that we can find associated subgraphs for a biologically relevant set of vertices and that the found subgraphs themselves are biologically interesting.
    [Abstract] [Full Text] [Related] [New Search]