These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Unsupervised Binning of Metagenomic Assembled Contigs Using Improved Fuzzy C-Means Method.
    Author: Liu Y, Hou T, Kang B, Liu F.
    Journal: IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1459-1467. PubMed ID: 27295684.
    Abstract:
    Metagenomic contigs binning is a necessary step of metagenome analysis. After assembly, the number of contigs belonging to different genomes is usually unequal. So a metagenomic contigs dataset is a kind of imbalanced dataset and traditional fuzzy c-means method (FCM) fails to handle it very well. In this paper, we will introduce an improved version of fuzzy c-means method (IFCM) into metagenomic contigs binning. First, tetranucleotide frequencies are calculated for every contig. Second, the number of bins is roughly estimated by the distribution of genome lengths of a complete set of non-draft sequenced microbial genomes from NCBI. Then, IFCM is used to cluster DNA contigs with the estimated result. Finally, a clustering validity function is utilized to determine the binning result. We tested this method on a synthetic and two real datasets and experimental results have showed the effectiveness of this method compared with other tools.
    [Abstract] [Full Text] [Related] [New Search]