These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The GLP-1 receptor agonists exendin-4 and liraglutide alleviate oxidative stress and cognitive and micturition deficits induced by middle cerebral artery occlusion in diabetic mice.
    Author: Li PC, Liu LF, Jou MJ, Wang HK.
    Journal: BMC Neurosci; 2016 Jun 13; 17(1):37. PubMed ID: 27296974.
    Abstract:
    BACKGROUND: Glucagon-like peptide 1 (GLP-1) analogs protect a variety of cell types against oxidative damage and vascular and neuronal injury via binding to GLP-1 receptors. This study aimed to investigate the effects of the GLP-1 analogs exendin-4 and liraglutide on cerebral blood flow, reactive oxygen species production, expression of oxidative stress-related proteins, cognition, and pelvic sympathetic nerve-mediated bladder contraction after middle cerebral artery occlusion (MCAO) injury in the db/db mouse model of diabetes. RESULTS: Sixty minutes of MCAO increased blood and brain reactive oxygen species counts in male db/db mice, as revealed by dihydroethidium staining. MCAO also increased nuclear factor-κB and intercellular adhesion molecule-1 expression and decreased cerebral microcirculation. These effects were attenuated by treatment with exendin-4 or liraglutide. MCAO did not affect basal levels of phosphorylated Akt (p-Akt) or endothelial nitric oxide synthase (p-eNOS); however, exendin-4 and liraglutide treatments significantly enhanced p-Akt and p-eNOS levels, indicating activation of the p-Akt/p-eNOS signaling pathway. MCAO-induced motor and cognitive deficits and micturition dysfunction, indicated by reduced pelvic nerve-mediated voiding contractions and increased nonvoiding contractions, were also partially attenuated by exendin-4 treatment. CONCLUSIONS: The above data indicate that treatment with GLP-1 agonists exerts protective effects against oxidative, inflammatory, and apoptotic damage in brain areas that control parasympathetic/pelvic nerve-mediated voiding contractions and cognitive and motor behaviors in a diabetic mouse model.
    [Abstract] [Full Text] [Related] [New Search]