These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Statistics of a leaky integrate-and-fire model of neurons driven by dichotomous noise. Author: Mankin R, Lumi N. Journal: Phys Rev E; 2016 May; 93(5):052143. PubMed ID: 27300865. Abstract: The behavior of a stochastic leaky integrate-and-fire model of neurons is considered. The effect of temporally correlated random neuronal input is modeled as a colored two-level (dichotomous) Markovian noise. Relying on the Riemann method, exact expressions for the output interspike interval density and for the serial correlation coefficient are derived, and their dependence on noise parameters (such as correlation time and amplitude) is analyzed. Particularly, noise-induced sign reversal and a resonancelike amplification of the kurtosis of the interspike interval distribution are established. The features of spike statistics, analytically revealed in our study, are compared with recently obtained results for a perfect integrate-and-fire neuron model.[Abstract] [Full Text] [Related] [New Search]