These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acquisition of hyaluronate-binding affinity in vivo by newly synthesized cartilage proteoglycans. Author: Sandy JD, O'Neill JR, Ratzlaff LC. Journal: Biochem J; 1989 Mar 15; 258(3):875-80. PubMed ID: 2730571. Abstract: We have studied the hyaluronate-binding properties of aggregating cartilage proteoglycans synthesized in vivo by immature (6-week), mature (25-week) and aged (75-week) rabbits. Precursor isotope (35SO4) was given by intra-articular injection and articular cartilage was removed from rabbits after periods ranging from 1.5 h to 168 h. Proteoglycans were extracted with 4 M-guanidinium/HCl and monomers were isolated by CsCl gradient centrifugation under dissociative conditions. The percentages of both radiolabelled and total tissue monomers with a high affinity for hyaluronate [that is, capable of forming aggregates on Sepharose CL-2B in the presence of 0.8% (w/w) hyaluronate] were then determined. For all samples about 30% of the tissue monomers were high-affinity; however, less than 5% of the radiolabelled monomers were high-affinity at 1.5 h after injection, and this figure increased gradually with time in vivo. The increase was rapid in immature rabbits, such that after 24 h, about 30% of the radiolabelled monomers were high-affinity; on the other hand for mature and aged rabbits the increase was markedly slower such that 30% high-affinity was attained only after about 72 h. The results show that aggregating cartilage proteoglycans are secreted in vivo in a 'precursor' form with a low affinity for hyaluronate, and suggest that conversion of these monomers to a form with a higher binding affinity occurs with a half-time of about 12 h in immature cartilages but greater than 24 h in mature cartilages. The possible relationship of these findings to the process of proteoglycan aggregation in vivo is discussed.[Abstract] [Full Text] [Related] [New Search]