These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design of ultrasensitive bisphenol A-aptamer based on platinum nanoparticles loading to polyethyleneimine-functionalized carbon nanotubes.
    Author: Derikvandi Z, Abbasi AR, Roushani M, Derikvand Z, Azadbakht A.
    Journal: Anal Biochem; 2016 Nov 01; 512():47-57. PubMed ID: 27307183.
    Abstract:
    Here, a highly sensitive electrochemical aptasensor based on a novel signal amplification strategy for the determination of bisphenol A (BPA) was developed. Construction of the aptasensor began with the deposition of highly dispersed platinum nanoparticles (PtNPs)/acid-oxidized carbon nanotubes (CNTs-COOH) functionalized with polyethyleneimine (PEI) at the surface of glassy carbon (PtNPs/PEI/CNTs-COOH/GC) electrode. After immobilizing the amine-capped capture probe (ssDNA1) through the covalent amide bonds formed by the carboxyl groups on the nanotubes and the amino groups on the oligonucleotides, we employed a designed complementary BPA-aptamer (ssDNA2) as a detection probe to hybridize with the ssDNA1. By adding BPA as a target, the aptamer specifically bound to BPA and its end folded into a BPA-binding junction. Because of steric/conformational restrictions caused by aptamer-BPA complex formation at the surface of modified electrode, the interfacial electron transfer of [Fe(CN)6](3-/4-) as a probe was blocked. Sensitive quantitative detection of BPA was carried out by monitoring the decrease of differential pulse voltammetric responses of [Fe(CN)6](3-/4-) peak current with increasing BPA concentrations. The newly developed aptasensor embraced a number of attractive features such as ease of fabrication, low detection limit, excellent selectivity, good stability and a wide linear range with respect to BPA.
    [Abstract] [Full Text] [Related] [New Search]