These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of Reference Genes for Quantitative Gene Expression Studies in a Non-Model Tree Pistachio (Pistacia vera L.). Author: Moazzam Jazi M, Ghadirzadeh Khorzoghi E, Botanga C, Seyedi SM. Journal: PLoS One; 2016; 11(6):e0157467. PubMed ID: 27308855. Abstract: The tree species, Pistacia vera (P. vera) is an important commercial product that is salt-tolerant and long-lived, with a possible lifespan of over one thousand years. Gene expression analysis is an efficient method to explore the possible regulatory mechanisms underlying these characteristics. Therefore, having the most suitable set of reference genes is required for transcript level normalization under different conditions in P. vera. In the present study, we selected eight widely used reference genes, ACT, EF1α, α-TUB, β-TUB, GAPDH, CYP2, UBQ10, and 18S rRNA. Using qRT-PCR their expression was assessed in 54 different samples of three cultivars of P. vera. The samples were collected from different organs under various abiotic treatments (cold, drought, and salt) across three time points. Several statistical programs (geNorm, NormFinder, and BestKeeper) were applied to estimate the expression stability of candidate reference genes. Results obtained from the statistical analysis were then exposed to Rank aggregation package to generate a consensus gene rank. Based on our results, EF1α was found to be the superior reference gene in all samples under all abiotic treatments. In addition to EF1α, ACT and β-TUB were the second best reference genes for gene expression analysis in leaf and root. We recommended β-TUB as the second most stable gene for samples under the cold and drought treatments, while ACT holds the same position in samples analyzed under salt treatment. This report will benefit future research on the expression profiling of P. vera and other members of the Anacardiaceae family.[Abstract] [Full Text] [Related] [New Search]