These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Na+-dependent and -independent transport of uridine and its phosphorylation in mouse spleen cells. Author: Plagemann PG, Woffendin C. Journal: Biochim Biophys Acta; 1989 Jun 06; 981(2):315-25. PubMed ID: 2730909. Abstract: Rapid kinetic techniques were used to study the transport and salvage of uridine and other nucleosides in mouse spleen cells. Spleen cells express two nucleoside transport systems: (1) the non-concentrative, symmetrical, Na+-independent transporter with broad substrate specificity, which has been found in all mammalian cells and is sensitive to inhibition by dipyridamole and nitrobenzylthioinosine; and (2) a Na+-dependent nucleoside transport, which is specific for uridine and purine nucleosides and resistant to inhibition by dipyridamole and nitrobenzylthioinosine. The kinetic properties of the two transporters were determined by measuring uridine influx in ATP-depleted cells and dipyridamole-treated cells, respectively. The Michaelis-Menten constants for Na+-independent and -dependent transport were about 40 and 200 microM, respectively, but the first-order rate constants were about the same for both transport systems. Nitrobenzylthioinosine-sensitivity of the facilitated nucleoside transporter correlated with the presence of about 10,000 high-affinity (Kd = 0.6 nM) nitrobenzylthioinosine-binding sites per cell. The turnover number of the nitrobenzylthioinosine-sensitive nucleoside transporter was comparable to that of mouse P388 leukemia cells. The activation energy of this transporter was 20 kcal/mol. Entry of uridine via either of the transport routes was rapidly followed by its phosphorylation and conversion to UTP. The Michaelis-Menten constant for the in situ phosphorylation of uridine was about 50 microM and the first-order rate constants for phosphorylation and transport were about the same. The spleen cells also efficiently salvaged adenosine, adenine, and hypoxanthine, but not thymidine.[Abstract] [Full Text] [Related] [New Search]