These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ovarian injury during cryopreservation and transplantation in mice: a comparative study between cryoinjury and ischemic injury.
    Author: Lee J, Kong HS, Kim EJ, Youm HW, Lee JR, Suh CS, Kim SH.
    Journal: Hum Reprod; 2016 Aug; 31(8):1827-37. PubMed ID: 27312534.
    Abstract:
    STUDY QUESTION: What is the main cause of ovarian injury during cryopreservation and transplantation in mice: cryoinjury or ischemic injury? SUMMARY ANSWER: Post-transplantation ischemia is the main cause of ovarian injury during cryopreservation and transplantation for restoring ovarian function. WHAT IS KNOWN ALREADY: During cryopreservation and the transplantation of ovaries, cryoinjury and ischemic injury inevitably occur, which has a detrimental effect on ovarian quality and reserve. STUDY DESIGN, SIZE, DURATION: A total of 80 B6D2F1 female mice were randomly allocated to 2 control and 6 experimental groups according to the presence or the absence of transplantation (n = 10/group). The control groups consisted of fresh or vitrified-warmed controls that had the whole ovary fixed without transplantation (fresh and vitri-con, respectively). The experimental groups were further divided according to the presence of vitrification (fresh or vitrified-warmed) and the transplantation period (2 [D2], 7 [D7] or 21 [D21] days). PARTICIPANTS/MATERIALS, SETTING, METHODS: In the control groups, fresh and vitrified-warmed ovaries were immediately fixed after the collection (fresh) and the vitrification-warming process (vitrification control, vitri-con), respectively. Of those experimental groups, three were auto-transplanted with fresh whole ovary (FrOT; FrOT-D2, FrOT-D7 and FrOT-D21). For the other three groups, the ovaries were harvested and stored in liquid nitrogen for 1 week after vitrification and then warmed to auto-transplant the vitrified whole ovaries (vitrified ovary [VtOT]; VtOT-D2, VtOT-D7 and VtOT-D21). After 2, 7 or 21 days of grafting, the grafts and blood sera were collected for analysis by hematoxylin-eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, CD31 immunohistochemistry and follicle-stimulating hormone enzyme-linked immunosorbent assay. MAIN RESULTS AND THE ROLE OF CHANCE: The vitrification-warming procedure decreased the proportion of intact follicles (Grade 1, G1) (vitri-con 50.3% versus fresh 64.2%) but there was a larger decrease due to ischemic injury after transplantation (FrOT-D2: 42.5%). The percentage of apoptotic follicles was significantly increased in the vitrified-warmed ovary group compared with the fresh control, but it increased more after transplantation without vitrification (fresh: 0.9%, vitri-con: 6.0% and FrOT-D2: 26.8%). The mean number of follicles per section and percentage of CD31-positive area significantly decreased after vitrification but decreased to a larger extent after transplantation (number of follicles, fresh: 30.3 ± 3.6, vitri-con: 20.6 ± 2.9, FrOT-D2: 17.9 ± 2.1; CD31-positive area, fresh: 10.6 ± 1.3%, vitri-con: 5.7 ± 0.9% and FrOT-D2: 4.2 ± 0.4%). Regarding the G1 follicle ratio and CD31-positive area per graft, only the FrOT groups significantly recovered with time after transplantation (G1 follicle ratio, FrOT-D2: 42.5%, FrOT-D7: 56.1% and FrOT-D21: 70.7%; CD31-positive area, FrOT-D2: 4.2 ± 0.4%, FrOT-D7: 5.4 ± 0.6% and FrOT-D21: 7.5 ± 0.8%). Although there was no significant difference between the two transplantation groups at each evaluation, the serum follicle-stimulating hormone level of both groups significantly decreased over time. LIMITATIONS AND REASONS FOR CAUTION: It is unclear how far these results can be extrapolated from mice to the human ovary. WIDER IMPLICATIONS OF THE FINDINGS: Minimizing ischemic injury should be the first priority rather than preventing cryoinjury alone, and decreasing the combination of cryoinjury and ischemic injury is necessary to improve ovarian quality after cryopreservation and transplantation. STUDY FUNDING/COMPETING INTEREST: This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI12C0055). The authors have no conflict of interest to declare.
    [Abstract] [Full Text] [Related] [New Search]