These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The relationship between the ventilation and lactate thresholds following normal, low and high carbohydrate diets. Author: McLellan TM, Gass GC. Journal: Eur J Appl Physiol Occup Physiol; 1989; 58(6):568-76. PubMed ID: 2731528. Abstract: Five men performed an incremental exercise test following a normal, low and high carbohydrate dietary regimen over a 7-day period, to examine the influence of an altered carbohydrate energy intake on the relationship between the ventilation (VET) and lactate (LaT) thresholds. VET and LaT were determined from the ventilatory equivalents for O2 (VE.VO2(-1) and CO2 (VE.VCO2(-1) and the log-log transformation of the lactate (La) to power output relationship, respectively. The total duration of the incremental exercise test, carbon dioxide output (VCO2), respiratory exchange ratio, blood La values and arterialized venous partial pressure of CO2 (PCO2) were reduced, and VE.VCO2(-1), the slope of the VE-VCO2 relationship, blood beta-hydroxybutyrate and pH were increased during the low carbohydrate trial compared with the other conditions. Total plasma protein and Na+, K+, and Cl- were similar across conditions. LaT and VET were unaffected by the altered proportions of carbohydrate in the diets and occurred at a similar oxygen consumption (mean VO2 across trials was 1.98 L.min-1 for VET and 2.01 L.min-1 for LaT). A significant relationship (r = 0.86) was observed for the VO2 that represented individual VET and LaT values. The increased VE.VCO2(-1) and slope of the VE-VCO2 relationship could be accounted for by the lower PCO2. It is concluded that alterations in carbohydrate energy intake do not produce an uncoupling of VET and LaT as has been reported previously.[Abstract] [Full Text] [Related] [New Search]