These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecularly imprinted polymer as efficient sorbent of solid-phase extraction for determination of gonyautoxin 1,4 in seawater followed by high-performance liquid chromatography-fluorescence detection.
    Author: Mei XQ, He XP, Wang JT.
    Journal: Anal Bioanal Chem; 2016 Aug; 408(21):5737-5743. PubMed ID: 27317255.
    Abstract:
    A kind of new molecularly imprinted polymer (MIP) was synthesized by bulk polymerization using guanosine as dummy template molecule, α-methacrylic acid as functional monomer and ethylene glycol dimethyl acrylic ester as crosslinker. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) showed that the MIP had homogenous and uniform-sized cavities. It was confirmed that the MIP had higher binding affinity and selectivity towards gonyautoxins 1,4 (GTX 1,4) than the non-imprinted polymer (NIP) according to the static equilibrium adsorption. An off-line molecularly imprinted solid-phase extraction (MISPE) method followed by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was established for the analysis of GTX 1,4. 0.1 mol/L acetic acid and 95:5 (v:v) methanol/water were optimized as the washing and elution solutions, respectively. The recoveries of spiked cultured seawater samples were satisfactory, as high as 88 %. Using this method, the concentrations of GTX 1,4 from cultured seawater samples of Alexandrium minutum and Alexandrium tamarense were detected to be 1.10 μg/L and 0.99 μg/L, respectively. Graphical Abstract The synthesis of molecularly imprinted polymer and molecularly imprinted solid-phase extraction analysis for gonyautoxin 1,4.
    [Abstract] [Full Text] [Related] [New Search]