These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of membrane galactolipids and surface pressure on plastoquinone behaviour.
    Author: Hoyo J, Guaus E, Torrent-Burgués J.
    Journal: Bioelectrochemistry; 2016 Oct; 111():123-30. PubMed ID: 27317998.
    Abstract:
    In this work biomimetic monolayers of a MGDG, monogalactosyldiacylglycerol, and DGDG, digalactosyldiacylglycerol mixture (MD), in a ratio close to that of the thylakoid membranes of oxygenic photosynthetic organisms, have been prepared. The lipid mixture incorporates plastoquinone-9 (PQ), that is the electron and proton shuttle of the photosynthetic reaction centres. The MD:PQ mixtures have been firstly studied using surface pressure-area isotherms. Langmuir-Blodgett (LB) films of those mixtures have been transferred onto a substrate forming a monolayer that mimics one of the bilayer sides of the thylakoid membranes. These monolayers have been characterized topographically and electrochemically. The results show the influence of PQ in the MD matrix and its partial expulsion when increasing the surface pressure, obtaining two main PQ positions in the MD matrix. The calculated apparent electron transfer rate constants indicate a different kinetic control for the reduction and the oxidation of the PQ/PQH2 couple, being kRapp(I)=0.7·10(-6)s(-1), kRapp(II)=2.2·10(-9)s(-1), kOapp(I)=7.4·10(-4)s(-1) and kOapp(II)=5.2·10(-5)s(-1), respectively. The comparison of the different galactolipid:PQ systems that our group has studied is also presented, concluding that the PQ position in the galactolipid matrix can be tuned according to several controlled variables.
    [Abstract] [Full Text] [Related] [New Search]