These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Growth inhibition and oxidative stress induced by 1-octyl-3-methylimidazolium bromide on the marine diatom Skeletonema costatum. Author: Deng XY, Hu XL, Cheng J, Ma ZX, Gao K. Journal: Ecotoxicol Environ Saf; 2016 Oct; 132():170-7. PubMed ID: 27318558. Abstract: Marine diatom Skeletonema costatum is an important prey in the marine food web and is often used as a standard test organism in ecotoxicological studies. In this study, in vivo experiments were performed to analyze the effects of 1-octyl-3-methylimidazolium bromide ([C8mim]Br) on the growth, photosynthetic activity, and oxidative stress in S. costatum using 96h growth tests with a batch-culture system. The growth of S. costatum was significantly inhibited by [C8mim]Br with 48 and 96h-EC50 of 17.9 and 39.9mgL(-1), respectively. The maximum quantum yield (Fv/Fm) and the light use efficiency (α) were inhibited by [C8mim]Br, which affected the growth of S. costatum. Subsequent biochemical assays in S. costatum revealed that [C8mim]Br induced changes of Chl a content, soluble protein content, and SOD activity, which had significant increases in low [C8mim]Br treatments (≤20mgL(-1)), but decreased in high [C8mim]Br exposures (≥40mgL(-1)). The increase of SOD activity at low concentrations (≤20mgL(-1)) may be considered as an active defense of S. costatum against [C8mim]Br stress by reactive oxygen species (ROS) quenching. In addition, [C8mim]Br increased ROS level and malondialdehyde (MDA) content in S. costatum, suggesting that the physiological effects of [C8mim]Br are resulted from ROS generation.[Abstract] [Full Text] [Related] [New Search]