These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Effects of Tongxinluo Capsule on Platelet Activating Factor, Vascular Endothelial Function, Blood Flow of Thrombolysis in Myocardial Infarction in Acute Myocardial Infarction Patients after Delayed Percutaneous Coronary Intervention].
    Author: Chen ZQ, Hong L, Wang H, Yin QL.
    Journal: Zhongguo Zhong Xi Yi Jie He Za Zhi; 2016 Apr; 36(4):415-20. PubMed ID: 27323611.
    Abstract:
    OBJECTIVE: To explore effects of Tongxinluo Capsule (TC) on platelet activating factor (PAF), vascular endothelial function, thrombolysis in myocardial infarction (TIMI) blood flow, and heart function in acute myocardial infarction (AMI) patients after delayed percutaneous coronary intervention (PCI). METHODS: Totally 80 AMI inpatients were recruited at Department of Cardiology, People's Hospital of Jiangxi Province, from Jan. 2008 to Sep.2013. Those in line with inclusion criteria were randomly assigned to TC treatment group and the conventional treatment group by random digit table, 40 in each group. Besides, another 40 healthy subjects from examinees at Outpatient Department were recruited as a healthy control group. PCI was performed after 1-week treatment. Then blood samples were collected, and then blood contents of CD62P, CD63, GP II b/III a, ET-1, NO, and plasma von Willebrand factor (vWF) levels were detected. Coronary TIMI blood flow and corrected TIMI frame count (CTFC) were determined during PCI. Meanwhile, noninvasive blood pressure (BP) and heart rate (HR) were recorded before and after PCI, and cardiac function measured. They were compared with the healty control group. RESULTS: Compared with the healthy control group, blood contents of CD62p, CD63, GP II b/IIIa receptor compound, vWF, and ET-1 significantly increased, but NO significantly decreased in AMI patients (all P < 0.05). After 1-week intervention of TC, blood contents of CD62p, CD63, GP II b/IIIa receptor compound, vWF, NO, and ET-1 significantly decreased (P < 0.05, P < 0.01). Compared with the conventional treatment group at the same time point, blood contents of CD62p, CD63, GP II b/IIIa receptor compound, vWF, and ET-1 decreased more significantly in the TC group (P < 0.05, P < 0.01), increased NO levels were also more obviously seen (P < 0.01). The aforesaid parameters changed more obviously at day 30, as compared with those changes at week 1 (P < 0.05, P < 0.01). The TIMI blood flow grade and CTFC were more obviously improved after PCI in the two treatment groups. Better TIMI blood flow was seen in the TC group. TIMI level 3 blood flow rate was higher in the TC group than in the conventional treatment group with statistical difference (P < 0.05). The left ventricular ejective factor (LVEF) after PCI was obviously elevated in the TC group and the conventional treatment group (P < 0.01), and the improvement was more obviously seen in the TC group (P < 0.05). There were 6 cases of recurrent angina, 3 cases of ventricular tachycardial (VT)/ventricular fibrillation (VF), 6 cases of heart failure (HF), 1 case of cardiac sudden death in the conventional treatment group, with the total incidence of cardiovascular events being 40% (16/40). There were 2 cases of recurrent angina, 2 cases of VT/VF, 2 cases of HF, no cardiac sudden death in the TC treatment group, with the total incidence of cardiovascular events being 15% (6/40). There was statistical difference in the recurrent rate of cardiovascular events between the two groups (χ² = 2.27, P < 0.05). CONCLUSION: TC not only could prevent coronary embolism of AMI patients after delayed PCI, attenuate vascular endothelial injury, but also could improve TIMI blood flow, and strengthen cardiac systolic function.
    [Abstract] [Full Text] [Related] [New Search]