These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Relationship of Triacylglycerol and Starch Accumulation to Carbon and Energy Flows during Nutrient Deprivation in Chlamydomonas reinhardtii. Author: Juergens MT, Disbrow B, Shachar-Hill Y. Journal: Plant Physiol; 2016 Aug; 171(4):2445-57. PubMed ID: 27325664. Abstract: Because of the potential importance of algae for green biotechnology, considerable effort has been invested in understanding their responses to nitrogen deprivation. The most frequently invoked reasons proposed for the accumulation of high cellular levels of triacylglycerol (TAG) and starch are variants of what may be termed the "overflow hypothesis." According to this, growth inhibition results in the rate of photosynthetic energy and/or carbon input exceeding cellular needs; the excess input is directed into the accumulation of TAG and/or starch to prevent damage. This study was aimed at providing a quantitative dataset and analysis of the main energy and carbon flows before and during nitrogen deprivation in a model system to assess alternative explanations. Cellular growth, biomass, starch, and lipid levels as well as several measures of photosynthetic function were recorded for cells of Chlamydomonas reinhardtii cultured under nine different autotrophic, mixotrophic, and heterotrophic conditions during nutrient-replete growth and for the first 4 d of nitrogen deprivation. The results of a (13)C labeling time course indicated that in mixotrophic culture, starch is predominantly made from CO2 and fatty acid synthesis is largely supplied by exogenous acetate, with considerable turnover of membrane lipids, so that total lipid rather than TAG is the appropriate measure of product accumulation. Heterotrophic cultures accumulated TAG and starch during N deprivation, showing that these are not dependent on photosynthesis. We conclude that the overflow hypothesis is insufficient and suggest that storage may be a more universally important reason for carbon compound accumulation during nutrient deprivation.[Abstract] [Full Text] [Related] [New Search]