These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of GABAA receptors in 5-HT1A and σ1 receptor synergism on prefrontal dopaminergic transmission under circulating neurosteroid deficiency. Author: Ago Y, Hasebe S, Hiramatsu N, Mori K, Watabe Y, Onaka Y, Hashimoto H, Takuma K, Matsuda T. Journal: Psychopharmacology (Berl); 2016 Sep; 233(17):3125-34. PubMed ID: 27339616. Abstract: RATIONALE: We previously reported that the fluvoxamine-induced increase in prefrontal dopamine levels is enhanced by adrenalectomy/castration (which results in circulating neurosteroid deficiency), via combined activation of serotonin1A (5-HT1A) and σ1 receptors. However, the mechanistic details of the interaction between 5-HT1A and σ1 receptors are unknown. OBJECTIVES: Because most neurosteroids have affinity for γ-aminobutyric acid (GABA)A receptors, in the present study, we examined the involvement of GABAA receptors in this process. RESULTS: Adrenalectomy/castration decreased pentobarbital-induced sleeping time in mice, suggesting that it reduced GABAA receptor function. The GABAA receptor antagonist picrotoxin (1 mg/kg) enhanced the fluvoxamine-induced increase in prefrontal dopamine, but not noradrenaline or serotonin, levels in mice, suggesting that picrotoxin mimicked the effect of adrenalectomy/castration. Picrotoxin also potentiated the increase in prefrontal dopamine levels mediated by co-administration of the 5-HT1A receptor agonist osemozotan and the σ1 receptor agonist (+)-SKF-10,047, while it did not affect the co-administration-induced changes in noradrenaline and serotonin levels. Conversely, the GABAA receptor agonist diazepam (1 mg/kg) blocked the effect of adrenalectomy/castration on the fluvoxamine-induced increase in prefrontal dopamine levels. Co-administration of osemozotan and (+)-SKF-10,047 did not affect the expression of the neuronal activity marker c-Fos in the prefrontal cortex, ventral tegmental area, and nucleus accumbens in control mice, while it increased the c-Fos expression only in the prefrontal cortex and ventral tegmental area in picrotoxin-treated mice. CONCLUSIONS: These results suggest that the GABAA receptor plays a key role in mediating the synergistic effects of 5-HT1A and σ1 receptor activation on prefrontal dopamine neurotransmission.[Abstract] [Full Text] [Related] [New Search]