These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intrinsic brain network abnormalities in codeine-containing cough syrup-dependent male individuals revealed in resting-state fMRI. Author: Qiu YW, Su HH, Lv XF, Ma XF, Jiang GH, Tian JZ. Journal: J Magn Reson Imaging; 2017 Jan; 45(1):177-186. PubMed ID: 27341655. Abstract: PURPOSE: To identify codeine-containing cough syrups (CCS)-related modulations of intrinsic connectivity network (ICN) and to investigate whether these changes of ICN can be related to duration of CCS use and to impulsivity behavior in CCS-dependent individuals. MATERIALS AND METHODS: Resting-state functional magnetic resonance imaging (fMRI) data in 41 CCS-dependent individuals and 34 healthy controls (HC) were scanned at 1.5T and analyzed using independent component analysis (ICA), in combination with a "dual-regression" technique to identify the group differences of three important resting-state networks, the default mode network (DMN), the executive control network (ECN), and the salience network (SN) between the CCS-dependent individuals and HC. RESULTS: Compared with the HC, CCS-dependent individuals had aberrant intrinsic connectivity within the DMN, ECN, and SN (P < 0.05, AlphaSim corrected). Furthermore, a longer duration of CCS use was associated with greater abnormalities in the intrinsic network functional connectivity (FC, P < 0.05, Bonferroni correction). Intrinsic network FC also correlated with higher impulsivity in CCS-dependent individuals (P < 0.05, AlphaSim corrected). CONCLUSION: Our findings revealed aberrant DMN, ECN, and SN connectivity patterns in CCS-dependent patients, which may provide new insight into how neuronal communication and information integration are disrupted among DMN, ECN, and SN key structures due to long duration of CCS use. LEVEL OF EVIDENCE: 1 J. Magn. Reson. Imaging 2017;45:177-186.[Abstract] [Full Text] [Related] [New Search]