These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anti-atherosclerotic effects of serelaxin in apolipoprotein E-deficient mice.
    Author: Tiyerili V, Beiert T, Schatten H, Camara B, Jehle J, Schrickel JW, Nickenig G, Andrié RP.
    Journal: Atherosclerosis; 2016 Aug; 251():430-437. PubMed ID: 27341752.
    Abstract:
    BACKGROUND AND AIMS: Serelaxin (SLX) is a recombinant form of human relaxin-2, a naturally occurring peptide that regulates maternal cardiovascular adaptations to pregnancy. It is unclear whether SLX has a therapeutic effect on atherosclerosis. Therefore, we investigated direct vascular effects of SLX in a mouse model of atherosclerosis. METHODS: 6-8 week-old female apolipoprotein E-deficient mice were fed a high-fat, cholesterol-rich diet for 6 weeks and additionally received a continuous treatment with vehicle or SLX (0.05 or 0.1 μg/h), during the last 4 weeks, via subcutaneously implanted osmotic mini-pumps. Vascular oxidative stress, vasorelaxation and atherosclerotic plaque development were assessed. RESULTS: Vascular oxidative stress was reduced in SLX-treated mice (vehicle: 322.67 RLU/s, SLX 0.05 μg/h: 119.76 RLU/s (p < 0.001 vs. vehicle), SLX 0.1 μg/h: 109.33 RLU/s (p < 0.001 vs. vehicle; p = 0.967 vs. 0.05 μg/h SLX)). Further SLX improved endothelium-dependent vasodilatation without influencing endothelium-independent vasorelaxation. Atherosclerotic plaque development was significantly reduced by SLX (vehicle: 0.38 ± 0.02 mm(2), 0.05 μg/h SLX: 0.32 ± 0.02 mm(2) (p = 0.047 vs. vehicle), 0.1 μg/h SLX: 0.29 ± 0.02 mm(2) (p = 0.002 vs. vehicle; p = 0.490 vs. 0.05 μg/h SLX)). Neither vascular macrophage, T-cell or neutrophil infiltration, nor collagen/vascular smooth muscle cell content differed between the groups. We observed a significant down-regulation of the angiotensin II type 1a receptor and a decrease in IL-6 and an increase in IL-10 plasma concentrations. CONCLUSIONS: Our data demonstrates novel pleiotropic effects of SLX on vascular oxidative stress, endothelial dysfunction and atherosclerotic plaque burden. Therefore, SLX could serve as a new drug for the treatment of atherosclerosis-related diseases.
    [Abstract] [Full Text] [Related] [New Search]