These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Overexpression of PRAS40(T246A) in the Proliferative Compartment Suppresses mTORC1 Signaling, Keratinocyte Migration, and Skin Tumor Development.
    Author: Rho O, Srivastava J, Cho J, DiGiovanni J.
    Journal: J Invest Dermatol; 2016 Oct; 136(10):2070-2079. PubMed ID: 27349859.
    Abstract:
    The proline-rich Akt (v-akt murine thymoma viral oncogene homolog 1) substrate of 40 kDa (PRAS40), an inhibitory component of the mTORC1 complex, was identified as an Akt substrate through phosphorylation at Thr246. Phosphorylation at this site releases PRAS40 from the mammalian/mechanistic target of rapamycin complex 1 (mTORC1) complex allowing increased activity. Targeted expression of a mutant form of PRAS40 (PRAS40(T246A)) in basal keratinocytes of mouse epidermis (BK5.PRAS40(T246A) mice) has allowed further examination of mTORC1-specific signaling in epithelial carcinogenesis. BK5.PRAS40(T246A) mice were resistant to 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced epidermal hyperproliferation and skin tumor development. In transgenic mice, PRAS40(T246A) remained bound to raptor in keratinocytes even after treatment with TPA, consistent with reduced mTORC1 signaling and altered levels of cell cycle proteins. BK5.PRAS40(T246A) mice also displayed attenuated skin inflammation in response to TPA. Inhibition of mTORC1 in keratinocytes significantly inhibited their migration in vitro and, in addition, inhibited 12-O-tetradecanoylphorbol-13-acetate-induced proliferation and migration of bulge-region stem cells in vivo. Furthermore, targeted inhibition of mTORC1 in BK5.PRAS40(T246A) mice resulted in delayed wound healing. Decreased keratinocyte migration and impaired wound healing correlated with altered expression of epithelial-mesenchymal transition (EMT) markers and reduced smad signaling. Collectively, the current data using this unique mouse model provide further evidence that mTORC1 signaling in keratinocytes regulates key events in keratinocyte function and epithelial cancer development.
    [Abstract] [Full Text] [Related] [New Search]