These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Solvent Polarity Effect on Nonradiative Decay Rate of Thioflavin T. Author: Stsiapura VI, Kurhuzenkau SA, Kuzmitsky VA, Bouganov OV, Tikhomirov SA. Journal: J Phys Chem A; 2016 Jul 21; 120(28):5481-96. PubMed ID: 27351358. Abstract: It has been established earlier that fluorescence quantum yield of thioflavin T (ThT)-a probe widely used for amyloid fibrils detection-is viscosity-dependent, and photophysical properties of ThT can be well-described by the fluorescent molecular rotor model, which associates twisted internal charge transfer (TICT) reaction with the main nonradiative decay process in the excited state of the dye. Solutions of ThT in a range of polar solvents were studied using steady-state fluorescence and sub-picosecond transient absorption spectroscopy methods, and we showed that solvent effect on nonradiative transition rate knr cannot be reduced to the dependence on viscosity only and that ∼3 times change of knr can be observed for ThT in aprotic solvents and water, which correlates with solvent polarity. Different behavior was observed in alcohol solutions, particularly in longer n-alcohols, where TICT rate was mainly determined by rotational diffusion of ThT fragments. Quantum-chemical calculations of S0 → S1 transition energy were performed to get insight of polar solvent contribution to the excited-state energy stabilization. Effect of polar solvent on electronic energy levels of ThT was simulated by applying homogeneous electric field according to the Onsager cavity model. Static solvent effect on the excited-state potential energy surface, where charge transfer reaction takes place, was not essential to account for experimentally observed TICT rate differences in water and aprotic solvents. From the other side, nonradiative decay rate of ThT in water, ethylene glycol, and aprotic solvents was found to follow dynamics of polar solvation knr ∼ τS(-1), which can explain dependence of the TICT rate on both polarity and viscosity of the solvents.[Abstract] [Full Text] [Related] [New Search]