These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcium dependence of osmolality-, potassium-, and angiotensin II-induced aldosterone secretion.
    Author: Radke KJ, Clendenin RE, Taylor RE, Schneider EG.
    Journal: Am J Physiol; 1989 Jun; 256(6 Pt 1):E760-4. PubMed ID: 2735401.
    Abstract:
    Different calcium-dependent mechanisms may be involved in mediating stimulus-induced aldosterone secretion. Using isolated perfused canine adrenal glands, we determined the effect of reductions in extracellular [Ca2+] and of infusion of a voltage-dependent calcium channel antagonist, nifedipine, on aldosterone secretion induced by decreases in osmolality, by increases in [K+], or by infusion of angiotensin II (ANG II). Aldosterone secretion was stimulated to a similar level by reducing osmolality, by increasing [K+], or by infusing ANG II. After 50 min of stimulation, lowering [Ca2+] from 1.25 to 0.10 mM caused a marked and similar inhibition of osmolality- and [K+]-induced aldosterone secretion that was significantly greater than inhibition of ANG II-induced aldosterone secretion. Similarly, nifedipine at 3.3 X 10(-8) M caused marked and similar inhibition of osmolality- and [K+]-induced aldosterone secretion that was significantly greater than the inhibition of ANG II-induced aldosterone secretion. These data demonstrate that calcium-dependent processes are involved in osmolality-, [K+]-, and ANG II-induced aldosterone secretion. However, the calcium-dependent process(es) evoked by reductions in osmolality or increases in [K+] are considerably different from that evoked by ANG II. Osmolality and potassium appear to induce aldosterone secretion primarily by activating voltage-dependent calcium channels.
    [Abstract] [Full Text] [Related] [New Search]